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4.1 CATEGORIES

When first meeting a new class of mathematical objects – such as topological spaces or abelian
groups – it is natural to try and learn about the underlying structures (open sets, commutative
multiplication laws) which characterize each object, and to carefully describe a reasonable no-
tion of functions (continuous maps, group homomorphisms) which preserve that structure. In
almost all cases of interest, it turns out that composing two such structure-preserving functions
produces another such function. The following definition provides a convenient umbrella under
which such (structure, function) pairs reside.

DEFINITION 4.1. A category C consists of
(1) a collection C0 whose elements are called objects,
(2) for every pair of objects x, y in C a set C (x, y) of morphisms from x to y, whose elements

we denote f , g, . . . : x → y, and
(3) for each triple x, y, z of objects a composition law C (x, y) × C (y, z) → C (x, z) sending

f : x → y and g : y→ z to some g ◦ f : x → z,
subject to the identity and associativity axioms.

Our definition remains incomplete until we spell out these two axioms; here they are:

(1) for each x in C0, there is a distinguished identity morphism 1x : x → x satisfying both

g ◦ 1x = g and 1x ◦ h = h

for any object y and morphisms g : y→ x and h : x → y;
(2) given any triple of morphisms of the form

x
f
// y

g
// z h

// w,

the associativity condition h ◦ (g ◦ f ) = (h ◦ g) ◦ f holds.

Instances of (object, morphism) pairs in mathematics which satisfy these two axioms are ubiqui-
tous — consider, for instance:

• the category Set of (sets, functions),
• the category Grp of (groups, group homomorphisms),
• its subcategory AbGrp of (abelian groups, abelian group homomorphisms),
• the category SC of (simplicial complexes, simplicial maps),
• the category VectF of (F-vector spaces, F-linear maps) over a field F, etc.

One can encode the associativity axiom in the form of a commuting square, like so:

C (x, y)× C (y, z)× C (z, w)
( f ,g,h) 7→(g◦ f ,h)

//

( f ,g,h) 7→( f ,h◦g)
��

C (x, z)× C (z, w)

(g◦ f ,h) 7→h◦(g◦ f )

��

C (x, y)× C (y, w)
( f ,h◦g) 7→(h◦g)◦ f

// C (x, w)

At first glance, this diagrammatic translation of (h ◦ g) ◦ f = h ◦ (g ◦ f ) might come across as
an elaborate crime against brevity. There are, however, several compelling reasons to become
familiar with the language of commuting diagrams — for one thing, there are many such dia-
grams in our immediate future. Another special feature of the categorical philosophy, besides
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this profusion of commuting diagrams, is that it can be turned inwards to reason about the the-
ory of categories itself. Those under its influence naturally ask what key piece of structure must
be preserved by functions which map one category C to another category C ′.

DEFINITION 4.2. A functor F : C → C ′ assigns
(1) to each object x in C0 an object Fx in C ′0, and
(2) to each morphism f : x → y in C a morphism F f : Fx → Fy in C ′,

subject to the following conditions:
(1) we have F1x = 1Fx for each x in C0, and
(2) for any pair of morphisms f in C (x, y) and g in C (y, z), we have

F(g ◦ f ) = Fg ◦ F f

(Here the composition on the left takes place in C while the composition on the right
takes place in C ′).

Thus, a functor C → C ′ sends C -objects to C ′-objects and the corresponding C -morphisms to
C ′-morphisms in a manner that duly respects composition laws of both C and C ′. One of the ex-
ercises to this Chapter asks you to define the composite of two functors and hence construct the
category Cat containing (categories, functors). We have been discussing categories and functors
because of the next result, which catalogues one of the most important properties of simplicial
homology (see Section 4).

THEOREM 4.3. For each dimension k ≥ 0, the assignment

K 7→ Hk(K; F)

constitutes a functor from the category SC of simplicial complexes and maps to the category VectF of
vector spaces over F.

We already know from Chapter 3 that every simplicial complex K can be assigned a vector
space Hk(K; F) by first building the simplicial chain complex (C•(K), ∂K) and then extracting the
relevant quotient ker ∂K

k / img ∂K
k+1. So the new content of Theorem 4.3 lies entirely on the level

of morphisms — we must first show that every simplicial map f : K → L induces a well-defined
linear map Hk f : Hk(K; F) → Hk(L; F) of homology groups; and next, we have to confirm that
given some other simplicial map g : L→ M, we have an equality

Hk(g ◦ f ) = Hkg ◦Hk f

of linear maps Hk(K; F)→ Hk(M; F). These are our goals in the next two Sections.

4.2 CHAIN MAPS

Fix simplicial complexes K and L as well we as a simplicial map f : K → L and a coefficient
field F. We will continue to write (C•(K), ∂K

• ) to indicate the simplicial chain complex of K (and
similarly for L).

DEFINITION 4.4. For each dimension k ≥ 0, let Ck f : Ck(K) → Ck(L) be the F-linear map
between chain groups defined by the following action on each basis k-simplex σ of K:

Ck f (σ) =

{
f (σ) if dim f (σ) = k
0 otherwise.
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Perhaps the most interesting aspect of this definition is its piecewise nature — some simplices
σ are faithfully mapped onto their images f (σ) while others are sent to zero, depending on
whether f is injective on their vertices or not. This is a necessary bit of book-keeping: we want
to produce a map from k-chains to k-chains for each k, and the image f (σ) of a k-simplex σ will
not be a basis element of Ck(L) unless dim f (σ) = k. Our next order of business is to see how
the linear maps C• f interact with the two boundary operators ∂K

• and ∂L
• . It turns out that the

diagram below is a commuting square (in the category VectF) for each k ≥ 0:

Ck(K)
∂K

k
//

Ck f
��

Ck−1(K)

Ck−1 f
��

Ck(L)
∂L

k

// Ck−1(L)

PROPOSITION 4.5. For each dimension k ≥ 0, and k-simplex σ in K, we have an equality

∂L
k ◦Ck f (σ) = Ck−1 f ◦ ∂K

k (σ).

PROOF. Given Definition 4.4, the argument naturally decomposes into two cases.
Case 1: dim f (σ) = k. Here Ck f (σ) = f (σ) and we have

∂L
k ◦Ck f (σ) = ∂L

k f (σ) since Ck f (σ) = f (σ),

=
k

∑
i=0

(−1)i · f (σ)−i by Definition 3.7.

On the other hand, ∂K
k (σ) equals ∑k

i=0(−1)iσ−i, and since f is injective on the vertices of σ it must
also be injective on the vertices of each face σ−i. Thus, Ck−1 f (σ−i) = f (σ−i) for each i, and we
have

Ck−1 f ◦ ∂K
k (σ) = Ck−1 f

(
k

∑
i=0

(−1)i · σ−i

)
by Definition 3.7,

=
k

∑
i=0

(−1)i f (σ)−i by Definition 4.4.

Thus, ∂L
k ◦Ck f (σ) and Ck−1 f ◦ ∂K

k (σ) coincide in this case.
Case 2: dim f (σ) < k. Here Ck f (σ) equals zero by definition, and hence so does its boundary

in L. It suffices to show that the other composite Ck−1 f ◦ ∂K
k (σ) is also zero. To this end, impose

orientations oK and oL on K and L so that f is orientation-preserving, i.e, oK(v) < oK(v′) forces
oL( f (v)) < oL( f (v′)). Writing σ as an oK-oriented simplex (v0, . . . , vk), we must have f (vp) =
f (vp+1) for some p in {0, . . . , k− 1}. Thus, f fails to be injective on the vertices of every face σ−i
of σ, with the possible exceptions of σ−p and σ−(p+1). Now,

Ck−1 f ◦ ∂K
k (σ) = Ck−1 f

(
k−1

∑
i=0

(−1)iσ−i

)
by Definition 3.7

=
k−1

∑
i=0

(−1)iCk−1 f (σ−i) by linearity of Ck f

= (−1)p
[

f
(
σ−p

)
− f

(
σ−(p+1)

)]
by Definition 4.4.
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Here the last step follows from our observation that Ck f evaluates to zero on all other other
faces of f (σ) since f will not be injective on their vertices. But now, f (σ−p) and f (σ−p+1) are
the same simplex in L, since both have vertices ( f (v0), . . . , f (vp), f (vp+2), . . . , f (vk)). Thus, both
∂L

k ◦Ck f (σ) and Ck−1 f ◦ ∂K
k (σ) equal zero in this case. �

As a consequence of this result, we are able to use the simplicial map f : K → L to produce
a sequence of linear maps C• f : C•K → C•L between the chain groups which form a ladder-
shaped commuting diagram:

· · ·
∂K

k+1
// Ck(K)

∂K
k
//

Ck f
��

Ck−1(K)

Ck−1 f
��

∂K
k−1
// · · ·

∂K
2
// C1(K)

C1 f
��

∂K
1
// C0(K)

C0 f
��

0
// 0

· · ·
∂L

k+1

// Ck(L)
∂L

k

// Ck−1(L)
∂L

k−1

//// · · ·
∂L

2

// C1(L)
∂L

1

// C0(L)
0
// 0

This is a standard example of a chain map, which can be used to relate arbitrary (i.e., not neces-
sarily simplicial) chain complexes.

DEFINITION 4.6. A chain map φ• from (C•, d•) to (C′•, d′•) is defined to be a sequence of
F-linear maps

{
φk : Ck → C′k | k ≥ 0

}
which satisfy

d′k ◦ φk = φk−1 ◦ dk

for each k ≥ 0.

Proposition 4.5 can be now be rephrased:

simplicial maps f : K → L induce chain maps C• f : (C•(K), ∂K
• )→ (C•(L), ∂L

•).

It turns out that chain maps form the correct notion of morphisms in the category of chain com-
plexes; their composition is not too difficult to define, and will be addressed by Exercise 4.3.

4.3 FUNCTORIALITY

To continue our proof of Theorem 4.3, we will use chain maps to construct maps of homology
groups.

PROPOSITION 4.7. Let φ• : (C•, d•) → (C′•, d′•) be a chain map. For each dimension k ≥ 0, there
is a well-defined F-linear map Hkφ : Hk(C•, d•)→ Hk(C′•, d′•) induced by φ•.

PROOF. To induce a map of quotient vector spaces ker dk/ img dk+1 → ker d′k/ img d′k+1, it
suffices to show that φk maps ker dk to ker d′k and img dk+1 to img d′k+1. First consider ξ ∈ Ck
satisfying dk(ξ) = 0. Using Definition 4.6, we get

d′k ◦ φk(ξ) = φk−1 ◦ dk(ξ) = 0,

so φk(ξ) lies in ker d′k as desired. Next, if η ∈ Ck lies in img dk+1, then we have η = dk+1(ζ) for
some ζ in Ck+1. Once again, Definition 4.6 gives us,

φk(η) = φk ◦ dk+1(ζ) = d′k+1 ◦ φk+1(ζ),

whence φk(η) lies in img dk+1. Thus, for each ξ in ker dk, our map Hkφ sends ξ + img dk+1 to
φ(ξ) + img d′k+1, with a guarantee that φ(ξ) lies in ker d′k. �
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Combining Proposition 4.5 with Proposition 4.7, we see that every simplicial map f : K → L
indeed produces a well-defined linear map Hk(K; F) → Hk(L; F) for each dimension k ≥ 0. In
order to avoid writing the monstrosity HkC f every time we want to mention this induced map,
we will abbreviate it to Hk f : Hk(K; F) → Hk(L; F). It is not difficult to confirm that when f is
the identity simplicial map K → K, its induced map is the identity on Hk(K; F). The following
result (which forms one of the exercises to this Chapter) takes a bit more work.

PROPOSITION 4.8. Given chain maps φ• : (C•, d•) → (C′•, d′•) and ψ : (C′•, d′•) → (C′′• , d′′• ), we
have

Hk(ψ ◦ φ) = Hkψ ◦Hkφ

for each dimension k ≥ 0

Applying the above result to the special case where our chain maps are induced by simplicial
maps (i.e., φ• = C• f and ψ• = C•g for some f : K → L and g : L → M) completes the proof of
Theorem 4.3.

We now have the ability to study not just the homology groups of simplicial complexes but
also linear maps of homology groups induced by simplicial maps (and more generally, chain
maps); we will now examine various salient properties of such maps. A chain map φ• is called
an isomorphism if each φk : Ck → C′k is an isomorphism from Ck to C′k — for such a φ the induced
maps H•φ are also isomorphisms. But in general H•φ can be an isomorphism even if φ• is not.

DEFINITION 4.9. A chain map φ• : (C•, d•) → (C′•, d′•) is called a quasi-isomorphism if the
induced map Hkφ : Hk(C•, d•)→ Hk(C′•, d′•) is an isomorphism for each dimension k ≥ 0.

In sharp contrast to testing whether a simplicial map induces homotopy equivalence or not,
testing whether it induces a quasi-isomorphic chain map (and hence, isomorphisms of homology
groups) is algorithmic and machine-computable.

REMARK 4.10. Consider a chain map φ : (C•, d•) → (C′•, d′•); if the dimensions of Ck and C′k
are finite, then the computation of Hkφ can be accomplished via the following linear algebraic
procedure:

(1) Extract basis vectors B and B′ for Hk(C•, d•) and Hk(C′•, d′•) via Proposition 3.15.
(2) For each basis chain b in B, write φk(b) as a linear combination of the basis chains of B′:

φk(b) = ∑
b′

αb,b′ · b′,

where each αb,b′ lies in the coefficient field F. These α coefficients can be determined for
all b at once by row-reducing the augmented matrix [B′k | φk(B)].

(3) The coefficients {αb,b′ | b ∈ B and b′ ∈ B′} form a matrix Hk(C•, d•) → Hk(C′•, d′•); this
matrix represents our linear map Hkφ in terms of the bases B and B′.

Computability issues aside, induced maps on homology can be somewhat subtle.

EXAMPLE 4.11. The figure below illustrates two simplicial maps f , g from the hollow 2-
simplex ∂∆(2) to another simplicial complex K. The homology groups of K and ∂∆(2) are
isomorphic as rational vector spaces, i.e.,

Hk(∂∆(2); Q) ' Hk(K; Q) =

{
Q if k ∈ {0, 1},
0 otherwise .
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The chain map C•g is a quasi-isomorphism whereas C• f is not.

4.4 CHAIN HOMOTOPY

There is a purely algebraic version of homotopy equivalence designed to work directly with
chain complexes (rather than topological spaces). As usual, the first step is to define an equiva-
lence relation between the set of all chain maps between a fixed pair of chain complexes.

DEFINITION 4.12. A chain homotopy η• between chain maps φ•, ψ• : (C•, d•) → (C′•, d′•) is
a collection of F-linear maps ηk : Ck → C′k+1 which satisfy

φk − ψk = ηk−1 ◦ dk + d′k+1 ◦ ηk

for each k ≥ 0.

We write η• : φ• ⇒ ψ• to indicate that η• is a chain homotopy as defined above; and the maps
φ• and ψ• are said to be chain homotopic whenever such an η• exists. Chain homotopy is an
equivalence relation on the set of all chain maps between a fixed pair of chain complexes.

REMARK 4.13. It is important to note that the linear maps ηk are not required to satisfy any
relations beyond the ones in the preceding defintion — in particular, they do not have to com-
mute with d, d′, φ or ψ. Even so, it is good to see how they fit within the commuting staircase
diagrams that contain φ and ψ:

The following result highlights the utility of chain homotopy.

PROPOSITION 4.14. If φ•, ψ• : (C•, d•)→ (C′•, d′•) are chain homotopic, then their induced maps
on homology coincide, i.e.,

Hkφ = Hkψ

for each dimension k ≥ 0.

PROOF. Let η• : φ• ⇒ ψ• be a chain homotopy. For any chain γ ∈ ker dk, Definition 4.12
gives us

φk(γ)− ψk(γ) = ηk−1 ◦ dk(γ) + d′k+1 ◦ ηk(γ).
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But dk(γ) = 0, so the first term on the right side disappears and the difference φk(γ) − ψk(γ)
equals d′k+1 ◦ ηk(γ), which evidently lies in img d′k+1. Thus, this difference is always a k-boundary,
which is undetectable by homology. �

Chain homotopies are to chain maps what homotopies (as in Definition 2.1) are to continu-
ous maps: they provide an indirect method for establishing that two chain complexes (C•, d•)
and (C′•, d′•) are related by a quasi-isomorphism. The good news is that this method largely
circumvents the tedious algebraic manipulations of Remark 4.10 and Proposition 3.15. But the
bad news is that in order to avail of this method, we require not only a backwards chain map
ψ• : (C′•, d′•)→ (C•, d•) but also a pair of chain homotopies, described below.

DEFINITION 4.15. A pair of chain complexes is said to be chain homotopy equivalent if there
are two chain maps

φ• : (C•, d•)→ (C′•, d′•) and ψ• : (C′•, d′•)→ (C•, d•)

along with chain homotopies

η• : 1(C•,d•) ⇒ ψ• ◦ φ• and η′• : φ• ◦ ψ• ⇒ 1(C′•,d′•).

Here 1(C•,d•) is the identity chain map of (C•, d•), etc.

It follows immediately from Proposition 4.14 that if two chain complexes are chain homo-
topy equivalent, then they must be related by quasi-isomorphisms and hence have isomorphic
homology groups.

EXAMPLE 4.16. The cone Cone(K) over any simplicial complex K (see Definition 1.19) has
homology groups isomorphic to those of ∆(0), namely:

Hk(Cone(K); F) =

{
F k = 0
0 k > 0.

To see this, let f : Cone(K) → ∆(0) be the simplicial map sending every vertex of the cone to
the unique vertex 0, and let g : ∆(0)→ Cone(K) be the simplicial map sending 0 to the special
vertex v∗ which lies in Cone(K)−K. Now the composite f ◦ g equals the identity on ∆(0), and
the other composite g ◦ f sends every vertex of Cone(K) to v∗. It remains to construct a chain
homotopy from the identity chain map on C•(Cone(K)) to the composite C•(g ◦ f ). This will
be accomplished in one of the exercises to this Chapter.

4.5 EXACT SEQUENCES AND THE SNAKE LEMMA

Our study of homotopy equivalence benefited greatly from a thorough analysis of contractible
spaces, i.e., the spaces which have the simplest possible homotopy type. For analogous reasons,
we ask which chain complexes have trivial homology.

DEFINITION 4.17. A sequence of vector spaces and linear maps

· · ·
ak+2

// Vk+1
ak+1

// Vk
ak
// Vk−1

ak−1
// · · ·

is said to be exact at k if ker ak equals img ak+1 as subpaces of Vk. The entire sequence is called
exact if it is exact at every k ∈N.

A casual glance at Definition 3.9 will confirm that every exact sequence is a chain complex,
and another brief look at Definition 3.11 reveals that exact sequences are precisely those chain
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complexes whose homology group is trivial in every dimension k ≥ 0. We call an exact sequence
short if all but three of the Vi (let’s say V0, V1 and V2 without loss of generality) are required to
be trivial. Short exactness relates to standard notions in linear algebra, for instance:

(1) 0→ V1 → V0 is exact at k = 1, iff V1 → V0 is injective,
(2) V2 → V1 → 0 is exact at k = 1 iff V2 → V1 is surjective,
(3) 0→ V2 → V1 → 0 is exact at k ∈ {1, 2} iff V2 → V1 is an isomorphism, and
(4) 0→ V2 → V1 → V0 → 0 is exact iff V1 = V0 ⊕V2.

The first three of these statements hold in broader contexts (i.e, we can replace the vector spaces
by abelian groups) whereas the last one is specific to vector spaces. The definition of a short
exact sequence also extends verbatim to chain complexes.

DEFINITION 4.18. A short exact sequence of chain complexes consists of three chain com-
plexes and two chain maps arranged as follows:

(C•, d•)
φ•
// (C′•, d′•)

ψ•
// (C′′• , d′′• ),

with the additional requirement that for each k ≥ 0 the chain groups

0 // Ck
φk
// C′k

ψk
// C′′k // 0

form a short exact sequence of F-vector spaces.

The following lemma is by far the most important result in this Chapter; it forms the first of
many miracles in the field of homological algebra.

LEMMA 4.19. [The Snake lemma.] For each short exact sequence of chain complexes

(C•, d•)
φ•
// (C′•, d′•)

ψ•
// (C′′• , d′′• ),

there exists a family of linear maps Dk : Hk(C′′• , d′′• )→ Hk−1(C•, d•) which fit into an exact sequence
of homology groups:

· · ·
Dk−1

// Hk(C•, d•)
Hkφ

// Hk(C′•, d′•)
Hkψ

// Hk(C′′• , d′′• )
Dk

// Hk−1(C•, d•)
Hk−1φ

// · · ·

The collection of linear maps {Dk | k ≥ 1} is called the connecting homomorphism of the
given short exact sequence. The full proof of this lemma is a tedious affair, and tends to be far
from enlightening. We will say just enough about it here to explain the serpentine etymology.
To build Dk, one starts with the piece of the short exact sequence connecting dimensions k and
k− 1:

Since both rows are exact by Definition 4.18, the φ maps are injective while the ψ maps are
surjective. We’d like Dk to send elements of the homology group Hk(C′′• , d′′• ) to elements of
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Hk−1(C•, d•), so it makes sense to start with the upper-right corner of this diagram. There are
four basic steps in the construction:

(1) Choose any γ lying in ker d′′k ⊂ C′′k .
(2) By surjectivity, there is some β in C′k satisfying ψk(β) = γ.
(3) Since ψ is a chain map, Definition 4.6 gives us

ψk−1 ◦ d′k(β) = d′′k ◦ ψk(β) = d′′k (γ) = 0;

thus, d′k(β) lies in ker ψk−1.
(4) By exactness of the bottom row, this kernel equals the image of φk−1, so there is some α

in Ck−1 satisfying φk−1(α) = d′k(β).
One defines Dk(γ) = α as the desired map. The promised snake materializes when we trace the
path taken in our short exact sequence γ 7→ β 7→ d′kβ 7→ α:

The argument is far from complete: one must show that Dk defines a well-defined map on
homology independent of our choice of β, that α lies in ker dk−1, and that the sequence involving
Hkφ, Hkψ and Dk is exact. We will only perform the second check here:

φk−2 ◦ dk−1(α) = d′k−1 ◦ φk−1(α) by Definition 4.6,

= d′k−1 ◦ d′k(β) since φk−1(α) = d′k(β),

= 0 since (C′•, d′•) is a chain complex.

But φk−2 is injective by exactness, so dk−1(α) = 0 as desired.

4.6 PAIRS AND RELATIVE HOMOLOGY

One of the first applications of Lemma 4.19 is the ability to relate the homology groups of a
simplicial complex K, a subcomplex L ⊂ K and the topological quotient |K|/|L|. This quotient
does not form a simplicial complex in any natural way, but we are still able to define its homol-
ogy by building an appropriate quotient chain complex as follows. Each chain group Ck(L) is a
subspace of the corresponding Ck(K) by Definition 3.6. And since tje faces of every simplex in L
themselves lie in L by the subcomplex property, the restriction of ∂K

k to Ck(L) coincides with ∂L
k

by Definition 3.7. Thus, ∂K
k induces a well-defined map of quotient spaces, which we denote

∂K,L
k : Ck(K)/Ck(L)→ Ck−1(K)/Ck−1(L).

Since ∂K
• is a boundary operator, it follows that ∂K,L

k ◦ ∂K,L
k+1 = 0.

DEFINITION 4.20. Let L ⊂ K be a pair of simplicial complexes; the relative homology groups
Hk(K, L) are defined to be the homology groups of the chain complex defined as follows: its
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chain groups are
Ck(K, L) = Ck(K)/Ck(L),

and the boundary operators are ∂K,L
k : Ck(K, L)→ Ck−1(K, L).

The Snake lemma enters the picture because whenever L ⊂ K is a subcomplex, we have an
apparent short exact sequence of chain complexes(

C•(L), ∂L
•
)
� � ι•

//
(
C•(K), ∂K

•
) π•

// //
(
C•(K, L), ∂K,L

•
)
.

Here the chain map ι• is given by inclusions of subspaces while the chain map π• is given by
projections to quotient spaces. Applying Lemma 4.19 to this short exact sequence, we obtain a
connecting homomorphism Dk : Hk(K, L) → Hk−1(L) and hence the following exact sequence
relating homology groups.

DEFINITION 4.21. The exact sequence of the pair L ⊂ K of simplicial complexes is given by

· · ·
Dk+1

// Hk(L)
Hk ι

// Hk(K)
Hkπ

// Hk(K, L)
Dk

// Hk−1(L)
Hk−1ι

// · · ·

The exact sequence of a pair is a wonderful tool for computing rel-
ative homology groups H•(K, L) using prior knowledge of Hk(K) and
Hk(L). Consider, for instance, the scenario where K is any simplicial
complex whose realization |K| is homeomorphic to the 2-dimensional
disk, while the subcomplex L ⊂ K consists of n interior vertices — the
case n = 5 has been illustrated. Building the chain complex C•(K, L)
which yields the relative homology is quite a chore, but the exact se-
quence of a pair works remarkably well. We know (or can compute,
if asked) that the homology of K agrees with that of ∆(2), whereas L
consists of n disjoint copies of ∆(0). Putting all this known informa-
tion about K and L together, we have:

Hk(K; F) =

{
F k = 0
0 k > 0

and Hk(L; F) =

{
Fn k = 0
0 k > 0

.

All the non-trivial bits of the exact sequence of this pair concentrate in the lower dimensions
— here is the relevant piece of the sequence:

· · · // 0 // H1(K, L)
D0

// H0(L)
H0ι

// H0(K)
H0π

// H0(K, L) // 0

Everything depends on the rank of the map H0ι which is induced on 0-th homology by the
inclusion of L into K. It is straightforward to check that this is not the zero map, and hence has
rank 1. Now exactness of this sequence immediately forces the rank of D0 to be n− 1 and the
rank of H0π to be 0. But D0 is injective and H0π is surjective (because of the leading and trailing
0’s plus exactness), which gives

Hk(K, L) =

{
Fn−1 k = 1
0 k 6= 1

.

REMARK 4.22. The relative homology of a pair L ⊂ K generalizes ordinary simplicial homol-
ogy of K if we allow ourselves the luxury of setting L = ∅; in this case the chain groups C•(K)
and C•(K, L) are equal, as are the boundary operators. On the other hand, the relative homology
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of a pair is further generalized by that of a triple M ⊂ L ⊂ K of simplicial complexes. Here the
short exact sequence of interest is(

C•(L, M), ∂L,M
•
)
� � ι•

//
(
C•(K, M), ∂K,M

•
) π•

// //
(
C•(K, L), ∂K,L

•
)
,

Once again, the chain map ι• is an inclusion while the map π is a projection; the subcomplex
property is necessary to get well-defined boundary operators of these relative chain complexes
(as it was in Definition 4.20). The connecting homomorphisms Dk : Hk(K, L) → Hk−1(L, M)
guaranteed by Lemma 4.19 fit into an exact sequence with H•ι and H•π.

4.7 THE MAYER-VIETORIS SEQUENCE

A second enormously useful application of the Snake lemma is that it confers the ability to
compute homology of a complicated simplicial complex K in terms of a decomposition into
two (hopefully simpler) subcomplexes. Assume that L and M are subcomplexes of K satisfying
K = L ∪M, and let’s agree to write their intersection L ∩M – which must also be a subcomplex
of K – as I. There are now four chain complexes and four chain maps (all inclusions) to keep
track of; these fit into the following diamond:

(C•(I), ∂I
•)

hH

vv

v�

))

(C•(L), ∂L
•)v�

((

(C•(M), ∂M
• )

hH

uu

(C•(K), ∂K
• )

Both paths from the top to the bottom give the same chain map (the one which includes chains
of I into chains of K); thus our diamond commutes in the category ChainF. The crucial idea here
is to generate a short exact sequence by combining the two chain complexes of the middle row
into a single one.

The direct sum of (C•(L), ∂L
•) and (C•(M), ∂M

• ) is the new chain complex defined as follows:
in each dimension k ≥ 0, it has

chain groups Ck(L)⊕Ck(M) and boundary operator
[

∂L
k 0

0 ∂M
k

]
.

The k-th homology group of this direct sum is Hk(L)⊕Hk(M). More interestingly, there is an
injective chain map ιk : Ck(I) → Ck(M)⊕ Ck(L) which sends every ξ to the pair (ξ, ξ). There
is also a second chain map πk : Ck(M) ⊕ Ck(L) → Ck(K) that sends each pair (α, β) to the
difference (β− α). This map π• is evidently surjective because K = L ∪M; thus, we obtain

(C•(I), ∂I
•)
� � ι•

// (C•(L), ∂L
•)⊕ (C•(M), ∂M

• )
π•
// // (C•(K), ∂K

• ) .

This turns out to be a short exact sequence: note that (α, β) ∈ Ck(L)∩Ck(M) lies in ker πk if and
only if α = β. But this equality holds if and only if the chain α lies in the intersection Ck(I) =
Ck(L) ∩ Ck(M), whence (α, α) lies in img ιk. Having obtained a short exact sequence of chain
complexes, we appeal once more to the Snake lemma and obtain a connecting homomorphism
Dk : Hk(K)→ Hk−1(I).

DEFINITION 4.23. Let K = L ∪ M be a decomposition of the simplicial complex K into two
subcomplexes L and M whose intersection is denoted I. The Mayer-Vietoris exact sequence
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associated to this partition is given by

· · ·
Dk−1

// Hk(I)
Hk ι

// Hk(L)⊕Hk(M)
Hkπ

// Hk(K)
Dk

// Hk−1(I)
Hk−1ι

// · · ·

This exact sequence is particularly effective when combined
with inductive arguments — we can use it to compute the i-th
homology group of every hollow k-simplex ∂∆(k) for i > 1. Con-
sider the decomposition ∂∆(k) = L∪M where L is the closed star
of the vertex 0 (see Definition 1.17) while M consists of the sim-
plex {1, 2, . . . , k} along with all its faces. This decomposition is
illustrated for k = 3 here. Note also that the intersection L ∩M is
the hollow simplex of one lower dimension, i.e., ∂∆(k− 1).

Now we claim that both L and M have the same homology as
∆(0). First note that L is clearly a cone over ∂∆(k− 1), so the con-
clusion follows from Example 4.16. And M is a solid k-simplex,
which is a cone over a solid (k− 1)-simplex, so once again Exam-
ple 4.16 does the job. Consequently, the homology groups Hi(L)
and Hi(M) are trivial for all i > 0, and hence so is their direct
sum. So for each i > 1, we obtain the following snippet of the

Mayer-Vietoris exact sequence:

0 // Hi(∂∆(k))
Di

// Hi−1(∂∆(k− 1)) // 0

Exactness forces Di to be an isomorphism for all i > 1, so it suffices to calculate the homology
groups Hi(∂∆(2); F) as a base case; we did this in Example 3.12, and can safely conclude that for
i > 0 we have:

Hi(∂∆(k); F) =

{
F i = k− 1
0 otherwise.

A separate (and somewhat easier) argument must be used to compute H0(∂∆(k)).

4.8 BONUS: HOMOTOPY INVARIANCE

Theorem 4.24 below is vital from both a theoretical and practical perspective; its proof requires techniques which
are outside our scope at the moment, but the ability to understand and apply it will be quite beneficial when
working with homology.

As mentioned at the beginning of Chapter 3, the Euler characteristic inherits its homotopy
invariance from homology.

THEOREM 4.24. Let K and L be simplicial complexes. For any choice of coefficient field F,
(1) if f , g : K → L are homotopic simplicial maps, then Hk f = Hkg for every k ≥ 0; and,
(2) if K and L are homotopy equivalent, then Hk(K) is isomorphic to Hk(L) for every k ≥ 0.

The second assertion follows from the first one if we use simplicial approximation (see The-
orem 2.15). The basic idea is to start with topology and gradually descend to algebra: Assume
that θ : |K| × [0, 1] → |L| is a homotopy from | f | to |g|. The first order of business is to build
a simplicial complex homeomorphic to |K| × [0, 1] — this is rendered difficult by the fact that
in general the product of a simplex with [0, 1] is not itself a simplex in any natural way. Fortu-
nately, such a product can be triangulated into a union of simplices, and putting these together
produces a simplicial complex P(K) whose realization is homeomorphic to |K| × [0, 1]. Using
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this homeomorphism, one approximates the homotopy θ as a simplicial map Sdn P(K) → L
(where Sd stands for barycentric subdivision). This approximated version of θ then descends to
a chain homotopy from C• f to C•g. An appeal to Proposition 4.14 completes the argument.

EXERCISES

EXERCISE 4.1. Given functors F : C → C ′ and G : C ′ → C ′′, define their composite G ◦ F
and show that this is a functor C → C ′′.

EXERCISE 4.2. Show that the collection of all simplicial complexes and simplicial maps sat-
isfies the axioms of a category SC.

EXERCISE 4.3. Consider two chain maps φ : (C•, d•)→ (C′•, d′•) and ψ : (C′•, d′•)→ (C′′• , d′′• ).
Show that the collection of maps ψk ◦ φk : Ck → C′′k prescribe a chain map from (C•, d•) to
(C′′• , d′′• ). Thus, chain maps are morphisms in the category ChainF of chain complexes over F.

EXERCISE 4.4. Given simplicial maps f : K → L and g : L → M, show that Ck(g ◦ f )
equals Ck(g) ◦Ck( f ). This shows that C is a functor from the SC of Exercise 4.2 to the category
ChainF of Exercise 4.3.

EXERCISE 4.5. Write down a proof of Proposition 4.8.

EXERCISE 4.6. Verify the assertions of Example 4.11.

EXERCISE 4.7. In the setting of Example 4.11, consider the simplicial map h : K → ∂∆(2)
that sends vertex a to 0, vertex d to 1 and vertex c to 2. Show that Hkh is an inverse to Hkg for
every k ≥ 1. (Note that h and g themselves are not inverse to each other as chain maps!)

EXERCISE 4.8. Prove that chain homotopy is an equivalence relation on the set of all chain
maps (C•, d•)→ (C′•, d′•).

EXERCISE 4.9. Using F = Z/2 coefficients, complete the argument of Example 4.16 as
follows. Define the linear maps ηk : Ck(Cone(K)) → Ck+1(Cone(K)) that sends each basis
k-simplex σ to

ηk(σ) =

{
σ ∪ {v∗} σ ∈ K
0 σ ∈ Cone(K)− K.

Show that η• prescribes a chain homotopy between the chain map φ• := C•(g ◦ f ) and the
identity chain map. [Hint: let d be the boundary operator for the simplicial chain complex of
Cone(K). Over F = Z/2 we don’t have to concern ourselves with any minus signs, and it
suffices to show that σ + φ(σ) = d ◦ η(σ) + η ◦ d(σ) for each simplex σ. Start with dim σ = 0
and induct upwards along dimension.]

EXERCISE 4.10. For each k ≥ 1, compute the relative homology group Hk(∆(k), ∂∆(k)).

EXERCISE 4.11. Let K and L be simplicial complexes. Identify a vertex v of K with a vertex
w of L to form a new simplicial complex K ∨ L. Prove that Hk(K ∨ L) = Hk(K)⊕ Hk(L) for all
k > 0 [Hint: Mayer-Vietoris].


